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Abstract 

Representations of a high-quality molecular electron 
density are studied. An evaluation of restricted radial 
functions is made using a least-squares figure of merit, 
the molecular quadrupole moment, the electric field at 
the nucleus, the electric-field gradient at the nucleus, an 
approximate energy and difference-density maps. It is 
concluded that for an accurate representation expan- 
sions to the quadrupole level or higher are needed with 
either single-term Slater-type radial functions having all 
exponents optimized, or two-term functions with a 
common exponent optimized. Generalized scattering 
factors from the restricted radial functions are not 
good approximations to those from completely flexible 
radial functions, but nevertheless give good property 
values. 

Introduction 

It is now a common practice (Coppens, 1977; Dawson, 
1967; Fink, Gregory & Moore, 1976; Harel & 
Hirshfeld, 1975; Kohl & Bartell, 1969; Price, Varghese 
& Maslen, 1978; Stevens, 1979; Stewart, 1976; 
Vidal-Valat, Vidal & Kurki-Suonio, 1978) for 
molecular electron densities derived from X-ray and 
electron diffraction data to be expressed as a super- 
position of pseudoatom densities centred on each of the 
nuclei of the molecule. By denoting the nuclear position 
vectors as R a and the associated pseudoatom density as 
p~ the total density becomes 

p ( r ) =  ~Pa(r-- R a ) :  ~.pa(ra). (1) 
a a 

The pseudoatom densities may be expressed as a finite 
multipole expansion about the nucleus (Dawson, 1965), 
with 

l { sin mtPa / (2) 
Pa(ra)= ~l m=-I ~ Pa'l(ra)Pr~(cos Oa) cos mtPal' 
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where Pa, t(ra) is a radial density function, and P~n(cos 
0a) is an associated Legendre polynomial. Stewart, 
Bentley & Goodman (1975) showed that such an 
expansion for diatomic molecules can be performed to 
arbitrary accuracy with the use of sufficiently flexible 
radial functions. The methods of that paper are readily 
used in producing accurate generalized scattering 
factors, which are the Fourier-Bessel transforms of the 
pa.t's in (2), from molecular wavefunctions, and have 
been applied to H 2, BF, CO, N 2 and the first-row 
diatomic hydrides. 

As formulated by Stewart, Bentley & Goodman 
(1975), generalized scattering factors are equivalent to 
solving numerically for p~.t(ra) (2) at each value of r a 
and rt,. From such a development, Epstein, Bentley & 
Stewart (1977) have determined the importance of the 
various multipoles in an expansion, and have been able 
to make qualitative statements regarding the form of 
suitable radial basis functions for use in analysing 
X-ray and electron diffraction data. However, the 
generalized X-ray scattering factors just described 
cannot be obtained by fitting an experimental charge 
density with a pseudoatom expansion. Instead the 
experimentalist has to be content with a truncated set of 
multipoles and a severely limited set of radial functions, 
usually single- or two-term Slater-type functions, r n 
exp (-~,, r), or Gaussian-type functions r" exp ( - %  r2). 
Hence we have preferred to deal directly with density 
functions using short expansions of Slater functions. In 
the present work various possibilities for such a 
procedure, many of which have been used in analysing 
experimental situations, will be critically examined in 
the context of the pseudoatom multipole analysis of a 
theoretical electron density for the hydrogen molecule. 
Some commonly used procedures give very poor 
expansions. It is the purpose of this paper to bring 
attention to these and to suggest better procedures. The 
number of Slater functions per multipole needed to fit 
the H 2 molecular density is investigated. The necessity 
of some form of exponent optimization is discussed 
along with the role of higher multipoles when less than 
completely flexible radial functions are employed. 

© 1980 International Union of Crystallography 
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Subsequent publications will extend the examination to 
the first-row hydrides and will apply the results to 
experimental situations. 

M e t h o d  

The calculated electron density for a diatomic molecule 
is represented as the sum of two nucleus-centred 
multipole expansions. 

J K 

pCmol = Z Pa,j(ra)Pj( c°s Oa) + Z Pb, k(rb)Pk( c°s Oh), (3) 
j = 0  k=0 

with Pj a Legendre polynomial and Pa,j(ra) a trial radial 
density function. By using Slater-type functions, we 
obtain 

p,,j(r a) = ~, P,,j  N, , j  r~ exp (--¢, ro). (4) 
n=j 

Here Pn,j is a variable population parameter, ~,, the 
exponent, may be optimized or held fixed at a value 
determined by some recipe, and n is an integer greater 
than or equal to the order of the Legendre polynomial 
with which it is associated. This constraint is imposed 
in order to ensure convergence of the integrals 
determining the electric field and field gradient, and to 
satisfy Poisson's equation for small r a (Stewart, 1977). 
The normalizer, N,,j, is that used by Hansen & 
Coppens (1978), with monopole terms normalized to 
unity, so that each monopole term contains Pn,o 
electrons, and higher-order multipoles normalized so 
that their absolute value integrates to 2.0 electrons. 
This results in the populations P, , j  having ready 
physical interpretations (Price, 1976). Thus the 
monopole populations directly give the number of 
electrons on each pseudoatom and higher multipole 
populations measure the quantity of charge which is 
redistributed. 

After substituting (4) into (3) the density P~mol is fitted 
to the molecular electron density using the method of 
least squares. The least-squares error 

e---- f(Pmo! e 2 - -  Pmol) d r  (5 )  

is minimized with respect to the population coefficients, 
P,,.j of (4), and if required to the exponents ~ .  Two 
quantitative measures of the goodness of fit are used. 
One is the least-squares figure of merit, R~, defined as 
the square root of the relative error function 

R w =  [t;/fp2mol dr] 1/2. (6) 

Since the calculated molecular density is not con- 
strained to contain the number of electrons in the 
molecule, another measure is the fraction of electrons 
accounted for by the model, F, and given by the sum of 
the various monopole populations divided by the 
number of electrons in the molecule. Values of F 
significantly different from 1.0 indicate deficiencies 

in the pseudoatom expansion which may be in the radial 
or the angular sets of functions or in both. A 
renormalization of ffmo~ is made after the least-squares 
procedure by multiplying each population by 1/F. 

It is necessary to limit the values of n considered in 
(4) and also the number of higher multipoles con- 
sidered. Equation (4) does not include what would seem 
to be a reasonable possibility; a radial expansion 
consisting of a linear combination of terms with equal 
values of n and hence differing only in their ¢,. This is 
the more familiar situation met in basis-set expansions 
for atomic and molecular wavefunctions. Experiments 
with this type of density function resulted in least- 
squares refining to nearly equal exponents Cn. Further 
limitations on the n values considered have been guided 
by the fact that molecular electron densities are 
generated from Hartree-Fock calculations, which 
employ basis functions with low powers of r (Stewart, 
1969). Hence we chose to consider expansions with 
different integral powers of r and the lowest powers 
consistent with the requirement that n > l. Exami- 
nation of the multipoles was limited to those outlined in 
Table 1. Each multipole term in an expansion has the 
same number of radial functions. The radial functions 
investigated are shown in Table 2. 

A number of ways of choosing the exponents (n in 
(4) were studied and are described below. 

(1) Scheme 1. ¢ = 2.0. This corresponds to choosing 
the atomic hydrogen ls exponent so that the exponent 
for the product (Is) 2 = 2.0. 

Table 1. Multipole expansions investigated 

Expansion 

Monopole terms only 
M + dipole terms 
D + quadrupole terms 
Q + octopole terms 
O + hexadecapole terms 

For H 2, J = K by symmetry. 

Order of the 
highest Legendre Abbreviation 

polynomial used in the 
Pj (cos 0) in the text for the 

expansion expansion 

0 M 
1 D 
2 Q 
3 O 
4 H 

Table 2, Radial expansions as in (4) for  each multipole 
term in (3) 

Type of Powers of r for 
expansion each multipole* 

single term M 0, D~, Q2, 03, H4 
two term MoM 1, DID 2, Q2 Q3, 

03 04, H4 Hs 
three term M0 Ml M2, Dl D2 D3, Q2 Q3 Q4, 

03 04 Os, H4 Hs H6 

* The subscript to each multipole abbreviation is the power of r 
in the radial function. 
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(2) Scheme 2. ~ = 2.48. The zeta value here comes 
from the standard molecular exponent for hydrogen of 
Hehre, Stewart & Pople (1969). 

(3) Scheme 3. All functions share a common 
exponent, (--opt, which is optimized. 

(4) Scheme 4. All exponents are separately op- 
timized. 

These successive schemes for choosing exponents 
are very similar to those employed by Fraga & Ransil 
(1961) in a LCAO-SCF analysis of the H 2 molecule. 

Exponent optimizations were achieved in simple 
cases by grid search methods and in the case of many 
variables with a gradient expansion algorithm 
(Bevington, 1969). The length of this procedure 
prevented us from fully studying three-term functions in 
scheme 4. 

The electron density function, Pmol, for the 1Zg+ 
ground state of H 2 is that of Stewart, Davidson & 
Simpson (1965), based on the first ten natural spin 
orbitals (Davidson & Jones, 1962) of the accurate 
wave-function of Kolos & Roothaan (1960). These ten 
natural spin orbitals account for 99% of the correlation 
energy. The density is given as 

(-~--) 3 1  
Pmo, = 2 ~ exp ( -a~)  Z akd ~k r// 

k,j 
(7) 

with a =  1.99, R = 1.4009 a.u. Here ~ and r/ are 
confocal elliptical coordinates. The coefficients ak, j are 
tabulated by Stewart, Davidson & Simpson (1965). As 
written, (7) integrates to 1.999825 electrons and for the 
present work Pmo~ was rescaled to contain 2.0 electrons. 

A comparison of physical properties calculated from 
PT, o~ with those obtained from Pmol is a measure of the 
effectiveness of any particular multipole expansion. 
Physical properties used for the comparison are the 
molecular quadrupole moment Q, the electric field at 
the nucleus e H, the electric-field gradient at the nucleus 
qH, and the energy calculated with the approximate 
formula of Politzer (1979). Expressions for the above 
properties are given by 

Q = R 2 -  < r2 P2 (cos 0)), 

e H = - - ( 1 / R  2) + <ra 2 P, (cos Oa) ), 

qri = (2/R 3) -- 2 <ra 3 P2 (cos Oa) ), (8) 

where (h> = fhp dr. 

The approximate energy is given by 

atoms 
E-~- Z kA ZA V~ °1' (9) 

a 

where V] ~°~ is the electrostatic potential at the nucleus 
A, with charge ZA. The parameter kA comes from 

k A = E ] t ° m / Z A  V~ t°m (10) 

with E~ t°m chosen as the near-Hartree-Fock atomic 
energy. For hydrogen, k n can be obtained exactly and 
Js 0.5. Thus for H 2 (9) reduces to 

E = V H = ( l / R )  -- (r~'>. (11) 

One-centre integrals required in the evaluation of the 
properties (8) and (11) for ffmol are straightforward. 
Two-centre integrals were evaluated through an expan- 
sion used by Pitzer, Kern & Lipscomb (1962) of the 
solid spherical harmonic on one centre about the other 
centre. Accordingly, the two-centre integrals reduce to 
a sum of single-centre integrals which are readily 
determined. Care, however, must be taken with the 
electric-field gradient, as pointed out by Pitzer, Kern & 
Lipscomb (1962), to treat correctly singularities at r b = 
0. 

Evaluation of molecular properties from the Stewart, 
Davidson & Simpson (1965) density function Pmol 
requires calculation of all integrals in confocal elliptical 
coordinates. The quadrupole moment is readily ob- 
tained and has been reported elsewhere (Stewart, 
Bentley & Goodman, 1975). However, the integrations 
for e H and qn are more difficult, and to our knowledge 
have only been attempted in part before (Epstein, 
1972). An outline of the evaluation is given in the 
Appendix, along with the evaluation of V n. 

Values of Q, e H, qlt and V n from Pmol and the 
corresponding expectation values of the operators in 
(8) and (11) are given in Table 3. Both e n and qn refer 
to the positive z direction chosen to point towards the 
other nucleus. 

To supplement the examination of physical proper- 
ties, difference-density plots are valuable for giving a 
qualitative indication of the efficiency of each multipole 
expansion and for showing how faithfully bonding 
distributions are being reproduced. Several molecular 
difference densities are in current use. We use the 
difference between Pmol and the superposition of the 
exact ground-state hydrogen-atom densities at the same 
internuclear distance, so that 

/IPmol = Pmol-- Z I q/~s 12 (12) 
a,b 

with an analogous expression for Affmol. This definition 
ensures that plots indicate how each expansion repre- 
sents the redistribution of the electron density accom- 

Table 3. Physical  properties f r o m  the H z electron 
density (7) scaled to two electrons 

All values are in a.u. 
Expectation 

Operator value Property Value 

r2p2 (cos 0) 0.52100 Q 1.44152 
r~ 1 1.82499 V n -1.11116 
r-da 2 Pt (cos 00) 0.51113 e H 0.00158 
r~ 3 P2 (cos 00) 0" 19408 qn 0" 33930 
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panying bonding. Also, it is this difference density 
which is most commonly used in reporting X-ray and 
electron diffraction experiments. It is therefore of 
considerable interest to determine the number and type 
of angular and radial functions required to reproduce 
this feature for a simple molecule. 

All calculations reported with exponent optimiz- 
ation have converged so that successive R w values 
differ by less than 1 x 10 -7 . This corresponds to 
changes of the order of 10 -3 a.u. in the properties and 
the exponents. 

Least-squares fits 

Least-squares populations for one-term functions from 
schemes 1 to 4 are shown in Table 4. Corresponding 
data for two- and three-term functions are not given, as 
they are more difficult to interpret, and show behaviour 
similar to that of single-term functions. Results of 
exponent optimization for the single-term functions can 
be seen in Table 5, where all the exponents for schemes 
3 and 4 differ significantly from either the 2.0 or 2.48 
of schemes 1 and 2. Differences are greatest for the 
higher multipoles in scheme 4. 

The populations in Table 4 are a direct measure of 
the relative importance of each of the multipole 
functions in each scheme. This is because single-term 
functions of the type employed in this analysis yield 
scattering factors whose peak height is independent of 
the exponent, but is proportional simply to the 
population. The constants of proportionality are 1.380, 
1.096, 0-929 and 0.817 for the functions D~, Q2, 03 
and H 4 respectively. 

Inspection of Table 4 shows that the relative 
importance of the mulfipoles depends on the choice of 
exponent for the radial function of each multipole. Even 
the sign of the multipole can alter. However, once the 

radial basis is made flexible enough by including 
exponent optimization in the manner of either schemes 
3 or 4 then the importance of each multipole decreases 
with increasing order of the multipole. Thus octopole 
and hexadecapole terms become less important as the 
representation of the lower-order multipoles is 
improved. 

In a generalized scattering-factor analysis of the 
same H 2 density employed in this paper, Epstein, 
Bentley & Stewart (1977) concluded that the octopole 
scattering factor is too small to be of significance in the 
analysis of electron diffraction data. However, the data 
of Tables 4 and 5 emphasize that this is only likely to be 
true provided some form of exponent optimization is 
performed to give the lower-order multipoles suffi- 
ciently flexible radial functions. 

There are three factors affecting the least-squares 
goodness of fit and the accuracy of the calculated 
physical properties. They are the scheme used for 
determining exponents, the number of terms in each 
radial expansion, and the length of the multipole 

Table 5. Optimized exponents of single-term radial 
functions in schemes 3 and 4 

For an explanation of the notation see Tables 1 and 2. 

(a) Scheme 3 

M D Q O H 

2.252 2.275 2.231 2.219 2.211 

(b) Scheme 4 

M D Q O H 

M o 2.252 2.243 2.219 2.200 2.195 
D I 2.961 2.612 2.404 2.378 
Q2 3.098 2.789 2.749 
03 3.537 3.381 
H4 4-259 

Table 4. Least-squares populations for single-term radial functions in schemes 1 to 4 

For an explanation of the notation see Tables 1 and 2. 

Scheme 1 Scheme 2 
M D Q o H M D Q O H 

M 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
D~ 0.157 0.216 0.235 0.262 0.140 0.147 0.143 0.132 
Q2 0.143 0.136 0.105 0.032 0.033 0.046 
03 0.079 0.158 -0.016 -0.038 
H4 0.138 -0.071 

Scheme 3 Scheme 4 
M D Q O H M D Q O H 

M 0 1-000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1-000 
D I 0.143 0.168 0.176 0.182 0-088 0.112 0-138 0-142 
Q2 0.077 0.078 0.074 0.031 0-049 0.051 
03 0-028 0.042 0.013 0.015 
//4 0-027 0.003 
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expansion, Table 1. As the easiest way to appreciate 
trends with these factors is graphically, Figs. 1 to 6 
show respectively R w, F, Q, %i, qn and E calculated 
from Politzer's (1979) approximate relation, graphed 
against the length of the multipole expansion, for each 
of schemes 1 to 4 and for each of the types of radial 
expansions used. 

In discussing R w (Fig. 1) we make the arbitrary 
judgement that a good fit will have R w <_ 0.02. With 
this in mind it can be clearly seen that the use of 
single-term radial functions is inadequate in schemes 1, 
2 or 3 and full optimization of exponents is required for 
such functions to be satisfactory, Fig. l(d). When all 
exponents are optimized there is little difference 
between one- and two-term functions and nothing is 
gained from the labour involved in handling the much 
larger set of parameters for the latter set. Without full 
optimization there is a considerable difference between 
one-term functions and the other sets (see Fig. la -c ) ,  
but both two- and three-term functions give similar R w 
values and very satisfactory fits to the data. Thus the 
major deficiency of one-term functions can largely be 
accounted for by adding one extra function with the 

Rw 
\ 

I " 

.L 
" - : . "  : , .  

Rw 

-0 

\ 

" - . . : . ~  

" ~ " :  :':"- - - ~ ' - - . . - - : :  : 1  

M D Q 0 H 

(a) 
M D O O H 

(b) 

.2 

Rw 

-2 

Rw 

-0 

M D Q 0 H M D 0 0 H 

(c) (d) 
Fig. 1. The least-squares figure of merit R w plotted against 

multipole expansion length. One-term functions ( ), two-term 
functions ( . . . . .  ), three-term functions ( - - - ) ;  (a) scheme 
1, (b) scheme 2, (c) scheme 3 and (d) scheme 4. For an 
explanation of the notation on the abscissa see Table 1. 

same exponent, but with the next-higher power of r. All 
graphs of R w show that a multipole expansion up to the 
quadrupole level is essential to obtain R w < 0.02. The 
graphs of F (Fig. 2) amplify these conclusions. 

Physical properties 

Low R w values are not sufficient to guarantee that a 
given physical property will be satisfactorily repro- 
duced by a pseudoatom expansion. Hence it is 
instructive to consider some physical properties, (h) = 
fhpCol dr, calculated from the rescaled densities P~nor 
Since the ability of the pseudoatom expansions to 
reproduce accurately the electron density is under 
examination, it is appropriate to compare the represen- 
tation of different physical properties with each 
expansion in terms of a range in the respective 
electronic expectation values from Pmol" Using D, the 
percentage difference, between the respective operator 
expectation value calculated for Prnol and c Pmol, SO that, 
for example, with the quadrupole moment 

[( r2 P2 (cos O))p,o,- ( r  2 PE (cos 0)~pco,] 
D =  ~ x 100, 

( r2 P2 (cos O))~oo ' 
(13) 

1.2 

1.1 

1-0 

.9 

1-2 

1-1 

1.0 

.9 

\ 

M D Q 0 H 

(a) 

1-2 

1.1 
"-.\ 

\ 

1 "0 .................................... --'-.~ . . . .  
, ~ .  . . . .  

M D Q O H 

(b) 

1.2 

F 

1-1 

1"0 

"9 

M D Q 0 H M D Q 0 H 

(c) (d) 
Fig. 2. The fraction of electrons counted, F. For an explanation of 

the representation and notation see Fig. 1. 
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we obtain a direct measure of the adequacy of the 
contribution of the calculated density to the property. 
Considering a range of + 10% in D to be of satisfactory 
accuracy for these expectation values, then this 
corresponds to a range of +0.18 a.u. in E, +0.05 a.u. 
in Q and 8 H and +0.04 a.u. in qH" 

Graphs of the molecular quadrupole moment, Q, are 
displayed in Fig. 3. The quadrupole moment is 
inadequately represented in scheme 1 and is only well 
reproduced in schemes 2 and 3 for two- and three-term 
functions in multipole expansions containing quad- 
rupole or higher-order terms. With all exponents fully 
optimized (Fig. 3d), Q is well reproduced by single- 
term functions at the dipole level. Using two-term 
functions and larger multipole expansions provides little 
improvement. 

The electric field at the nucleus, ell, which must be 
zero for the equilibrium internuclear distance and the 
exact density function has a value from Pmol close to 
this. Only single-term functions in schemes 1 and 2, 
and expressions consisting of monopoles alone fail to 
yield satisfactory values (see Fig. 4). When some 
exponent optimization is included all expansions above 
the monopole level give very close agreement with the 
theoretical value. Once again the similarity between 

two- and three-term functions for schemes 1 to 3 and 
one- and two-term functions in scheme 4 is evident. 

New features appear with qH, shown in Fig. 5. It has 
not been possible to represent qH adequately with a 
multipole expansion below the quadrupole level, as 
expected from the general considerations of Stewart, 
Bentley & Goodman (1975). Above the quadrupole 
level one-term functions provide a reasonable represen- 
tation of qn in schemes 2 and 3 and give close to the 
accurate value in 4. The similarities between the 
functions noted already are repeated. 

Values of the approximate energy, E = VH, 
displayed in Fig. 6, show similar behaviour to F. 
Furthermore, it can be seen on inspection that the 
product F E  is invariably close to E obtained from Pmol, 
with an average o f - 1 . 1 1 2  for all density basis sets 
considered. 

Difference-density maps 

The trends already discussed are also shown by the 
difference-density plots Affmo~ which are reproduced in 
Figs. 8 to 11 for all the schemes studied. In addition, 
these plots provide some new insights of their own. 
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(c) (d) 
Fig. 3. The molecular quadrupole moment Q. For an explanation of 

the notation and representation see Fig. 1. The horizontal line is 
Q from Pmo= (7). Q is in a.u. 
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Fig. 8. Density-difference maps d/~o I for scheme 1, (a) one-term 
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explanation of the notation M, D, etc. see Table 1. Outer negative 
contours are the same as in Fig. 7 except (a) D where it is 
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that in (a) D represents 0.0313 e %3, the remainder are the same 
as Fig. 7. 
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The accurate difference density is shown in Fig. 7. It 
can be seen to exhibit familiar bonding features with a 
large accumulation of electron density around the bond 
and immediately behind the nuclei. A corresponding 
decrease of electron density occurs beyond this region, 
with depressions occurring some distance behind the 
nuclei. These depressions are near 0-01 e a o  3 deep and 
the build up of density in the bond peaks is approxi- 
mately 0.1 e ao 3. Reproduction of the general features 
of APmol places no more stringent demands on the 
pseudoatom expansion than the requirements already 
discussed. And so it can be seen (Figs. 8 to 10) that 
one-term functions in any of schemes 1 to 3 fail to 
reproduce the features of the ZlPmol plot in magnitude or 
shape, but if the multipole expansion is either at the 
quadrupole level or better, then two-term functions 
satisfactorily reproduce the reference in all schemes. 
Nevertheless, there are still noticeable differences 
between the better APCmo~ plots and APmo~, principally in 
the shape of the outer contours and in the depth of the 

depression behind the nucleus. Three-term functions 
are required to account accurately for these features if 
all exponents are not fully optimized, Fig. 11. 

C o m p a r i s o n  wi th  g e n e r a l i z e d  s ca t t er ing  f a c t o r s  

As mentioned in the Introduction, the generalized 
scattering factors (GSF's) , f~ sv (S), of Stewart, Bentley 
& Goodman (1975) have been recommended as a 
guide to the rational choice of pseudoatom multipoles 
and radial basis functions (Epstein, Bentley & Stewart, 
1977). In essence it is expected that the structure of 
each f ~ s v ( s )  curve can suggest the number of 
exponential-type radial functions for each multipole, 
and the relative magnitude of t h e f ~  sv (S) can be used 
to decide on the priority for introduction of the 
multipoles into a least-squares analysis of electron 
diffraction for diatomic molecules. 
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It is therefore instructive to compare the results of 
the foregoing section with GSF's obtained from the 
same density function for H2. Since GSF's are 
calculated for a finite range of S, any inverse Fourier 
transformation to the corresponding real-space radial 
functions will include series-termination effects. The 
resulting multipole in real space will be the convolution 
of the true Pa,l with a first-order spherical Bessel 
function. To avoid this, GSF's are compared with sets 
of restricted radial functions in reciprocal space. 

Generalized scattering factors for H 2 up to the 
quadrupole level are tabulated by Stewart, Bentley & 
Goodman (1975). The calculated scattering factor for 
the lth multipole on centre a is given by 

oo 

fCa, t(s)= 4n f pa, t(ra) jt(Sra)rZa dr a. (14) 
o 

With an expansion ofPa, t(ra) in k terms of the form 

l+k--I 
pa, l ( ra )=  ~ e i N i r i a e x p ( - - ~ i r a ) ,  (15) 

i=l 

(14) can be written 

l+k -1  
f~ , l ( s )=4zr  ~ PiNiJi+2, t(s,~i) (16) 

i=l 

with 

oO 

Jn,m(s,a) = f r ~ exp (--ar)jm(sr) dr. (17) 
0 

The J,,m can be obtained from the recurrence relations 
published by Avery & Watson (1977), beginning with 
Ji,0 = ( s2 + a2) -~" 

It is readily established that the GSF's themselves 
can be fitted from a small expansion of exponential 
radial functions. The adequacy of a fit to a GSF curve 
of order ! is measured by the relation 

= 2 } 112, 
Rt {x~/Ztf?SV(si)] (18/ 

s, 
where 

f - - - - .  
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Fig. 11. Density-difference maps AP~ot for scheme 4. The highest 

positive contour in (a) D represents 0 .125  e ao 3. 

with 

Y,~= E [f~SF(si)-- f~(si)]2 (19) 
S l  

l+k-1 
f~(si) = • c: J:+ 2,t(si, ~:) (20/ 

j = l  

and the summation in s i is over the set of sin 8/2 values 
tabulated by Stewart, Bentley & Goodman (1975). 
Least-squares parameters obtained from this analysis 
are given in Table 6. The Pi a r e  populations of 
normalized radial functions which have been obtained 

Table 6. Least-squares parameters and physical 
properties obtained for fits to GSF's in H E up to the 

quadrupole level 

The population coefficients, Pt, are given in brackets. 

One term Two term Three term 

~i 2-265 (1.001) 2.472 (0-737) 2.503 (0-654) 
2.492 (0-262) 2.485 (0-509) 

2.944 ( -0 .223)  

~,. 2-774 (0.097) 2-350 (0.203) 2.530 (0-063) 
2 .610( -0 .105)  3.370(0-124) 

3.832 (-0-090) 

~i 3-745 (0.014) 3.014 (0.059) 3.324 (0.005) 
3-464 ( -0 .044)  4. ! 17 (0.054) 

4.726 ( -0 .044)  

R.. 0.0206 0.0120 0.0051 
F 1.001 0.999 1-000 
Q 1.441 1.437 1.444 
e. H 0.004 0-009 -0 .001 
qH 0.344 0.331 0.338 

R0 0.0420 0.0227 0.0022 
R t 0.0150 0.0072 0.0015 
R 2 0-0833 0.0267 0.0149 

Multipole 

Mo 
M, 
M2 

D~ 
D2 
D3 

Q2 
Q3 
Q, 
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from the c~ of (20) so that direct comparison can be 
made with Tables 4 and 7. The R 0 factor quoted for the 
monopole term is for Af~SF(s), the difference between 
f0(s) and the scattering factor of an exact ground-state 
hydrogen atom replacing f0~SF(s) in (19), although the 
actual least-squares fitting was made on the f0~SF(s) 
curve. Table 6 also gives the values of physical 
properties calculated from the radial functions fitted to 
the GSF's .  Excellent agreement with the theoretical 
property values is obtained for all the functions tried. 
Both two- and three-term functions show good fits to 
the individual multipole GSF ' s  as seen from the small R 
values. However, one-term functions give poor fits. A 
more detailed examination of the one-term functions 
reveals that in the case of the monopole GSF the major 
disagreement occurs at large values of sin 0/2, but for 
the quadrupole GSF  there are differences over most of 
the range of sin 0/2 values. 

Table 7. Least-squares parameters and physical 
properties obtained for two- and three-term functions 
fitted directly to Pmol for H 2 up to the quadrupole level 

The P; values are given in brackets. 

Two term Three term Multipole 

~ 2.285 (0.884) 2.249 (0.933) M 0 
3.110 (0.116) 3.803 (0.075) M~ 

8.324 (-0.008) M 2 

~t 2.647 (0.065) 2.679 (0.091) O~ 
4.374 (0.027) 3.924 (--0.016) D 2 

5.042 (0.020) D 3 

~ 4.574 (0.012) 2.666 (0.075) 02 
10.581 (--0-001) 2.489 (--0.023) 03 

3.911 (--0.039) Q4 

R~ 0.0041 0-0033 
F 0.998 1-000 
Q 1.426 1-456 
e n 0.001 0.001 
qn 0.337 0.332 

,'.,;'~ ",,~, 

,'~ ~ 

~/ "\ 
~o i ~ ,, 

g !  \ 

i' 

- /  
~ , /  
:.~: " ~.'0 ' 0.~0 ' 0.;0 ' 0.;0 ' ~.;0 

sin 10/~)IA -1) 

Fig. 12. Plots of the difference between the monopole scattering 
factor for H2, fo(S), and the scattering factor of an exact 
ground-state hydrogen atom. One-term function ( ), two- 
term function ( . . . . .  ), three-term function (---) ,  results for the 
generalized scattering factors are given by crosses +. 

A comparison of the parameters in Table 6 with 
those in Tables 4, 5 and 7 reveals that there are 
considerable differences between the radial functions 
obtained by fitting the molecular electron density with 
schemes 3 and 4 and those fitted to the GSF's .  For the 
sake of comparison, parameters for a three-term 
function fitted to the molecular density are given in 
Table 7. These parameters have not converged to the 
same limits of R w which were used in obtaining all other 
restricted radial functions. In terms of the parameter  
values even the three-term functions appear very 
different, but this is more apparent than real as shown 
in Figs. 12 to 14 which give plots of GSF ' s  and 
scattering factors from the restricted functions. 

The monopole scattering factors are presented as 
Afo (s) in Fig. 12. Only the three-term function is a close 
approximation to Af~oSr(s), at low sin 0/2, but the two- 
and three-term functions are both very good at high 
sin 0/2. The dipole functions shown in Fig. 13 exhibit 
similar behaviour. The quadrupole term in Fig. 14, 
however, is different. None of the restricted radial 
functions is a good approximation to f~SF(s), but they 
do approach the GSF as the number of terms in the 
radial expansion increases. The single-term function is 
more than twice the value of f~SF(s) at low sin 0/2, but 
is too small at sin 0/2 above 0.7 A -~. The two-term 

4 

fl 

0 .O0 0.20 0.40 0.60 0.80 ~ 1.00 

s i n  (0/ ] . )  ( A  -1)  

Fig. 13. Dipole scattering factors for H 2. The representation is 
the same as in Fig. 12. 

0 O0 0 20 0 40 60 80 I 0 

s i n  ( 0 / 2 ) ( / ~ - ~ )  

Fig. 14. Quadrupole scattering factors for H 2. The represen- 
tation is the same as in Fig. 12. 
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f~(s) is negative below 0.12 A -1, and the three-term 
f~(s) is the only expansion to represent approximately 
f2GSF(s) at all sin 8/2 values. Even this expansion is 
quite deficient at low sin 8/2. 

These results suggest that it is not possible to get a 
reasonable approximation to GSF's in an analysis of 
the molecular density with single-term exponential-type 
functions, although single-term functions are adequate 
for directly fitting GSF's. Generalized scattering factors 
are the multipole scattering factors and hence radial 
functions in real space, expected from a least-squares 
analysis of diffraction data in the limit of totally flexible 
radial basis sets. Unfortunately they are not close to 
what is obtained from analyses of electron densities, 
and hence diffraction data, with restricted sets of radial 
functions. Hence the usefulness of GSF's for deter- 
mining the suitability of different sets of single- or 
several-term exponential functions or the magnitude 
of the various multipoles when using limited radial 
functions would seem to be somewhat restricted. 
Flexibility in the radial functions is the key to 
reproducing GSF's and as it increases the agreement 
with the GSF's rapidly improves. With two- and 
three-term functions the high sin 8/2 regions are well 
approximated. In real space this corresponds to a good 
fit to Pmol near the nuclei and in the region of the bond, 
but poor agreement at large distances from the bond, 
where even more flexible radial functions would seem to 
be required. This is undoubtedly why the inner 
moments of the electron density which appear in ell, qH 
and V u, are well represented by the limited radial- 
function fits (see Table 7 and Figs. 4 to 6) but Q which 
depends more heavily on the outer regions of the 
electron density is not so well reproduced. As Figs. 12 
to 14 show, fitting directly to the density with restricted 
radial functions fits the high sin 8/2 region adequately, 
but not in the region below 0.5 A -1, and thus yields 
poorer values of Q (Table 7). On the other hand, 
similar fits to the GSF curve directly fit better at low 
sin 0/2 and therefore yield a good representation of Q, 
as seen from Table 6. 

Conclusions 

The results obtained in this work are only for the 
hydrogen molecule, a simple molecule with no core 
electrons. However, any inferences drawn will cer- 
tainly represent the minimum requirements for nuclear- 
centred multipole expansions of more complicated 
molecules. Certain definite conclusions come from the 
results discussed. 

Firstly, under most circumstances it is necessary to 
include at least up to quadrupole terms in a multipole 
expansion. The exceptions are for a description of the 
electric field at the nucleus and the molecular quad- 
rupole moment in the scheme where all exponents are 
optimized, so that for practical purposes it would be 

unwise to work with less than quadrupole terms. Even 
though satisfactory for properties, the expansions to the 
quadrupole level still show discernible distortions in the 
APCmo~ plots (see Figs. 8 to 11) although they only 
represent shifts in very small fractions of an electronic 
charge. It is necessary to include oetopole terms to 
rectify this. Secondly, it is readily seen from the graphs 
and plots that one-term Slater radial functions are 
suitable only if all exponents are separately optimized. 
At this level it is certainly not necessary to use 
two-term Slater radial functions. If full optimization is 
not performed it is still possible to get a good fit to the 
density, but two-term Slater radial functions must be 
used. It is necessary then to use at least standard 
molecular exponents but it is preferable to optimize the 
common exponents. 

Our results may be compared with those of Epstein, 
Bentley & Stewart (1977) who, working with 
generalized scattering factors obtained at the quad- 
rupole and octopole levels for HE, noted that a single 
exponential function should suffice to represent the 
generalized scattering factors for each multipole. This is 
at variance with our findings which clearly show that 
the GSF's cannot be reproduced by a single exponen- 
tial fit to the electron density. The H 2 electron density 
itself, though, is successfully fitted with such a function, 
but it is emphasized that all exponents must be 
optimized. Epstein, Bentley & Stewart (1977) also 
observe that the octopole term appears to be too small 
to be of significance in the analysis of real diffraction 
data. Our results suggest that although this may be the 
case for totally flexible radial functions, radial functions 
with restricted flexibility yield appreciable coefficients 
for such high-order multipoles. Moreover, any dif- 
ference densities obtained from a truncated multipole 
expansion will show features which are a direct result of 
the neglect of octopole terms. 
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APPENDIX 

A calculation of VH, ~H and qH from Pmol (7) requires 
determination of the expectation values (1/ra) ,  (r~ 2 x 
P1 (cos 0a)) and (r~ -3 P2 (cos Oa) ). V H is obtained from 

(1/ra) = (2/R) (1/(~ + r/)) 

= -  ~ a~ exp (--aO ~k+a d~ 
R . 



668 PSEUDOATOM EXPANSIONS OF THE H 1 ELECTRON DENSITY 

x f ( d r / - -  f e x p ( - - a O ¢ * d ¢  f 03+1dr/,] 
- 1  1 - 1  

(A 1) 

but sincej is always even, 

1 

f 03+' dr /= 0, 
--1 

hence (1/ra) = (8/R) Z (akj/J + 1)Ak+l (a) (A2) 
k , j  

oo 

with A~ (a) = f t n exp (-at)  dt (A 3) 
l 

and k = 0, 1, 2 , . . . ,  12,j = 0, 2, 4 , . . . ,  12. 

The determination of e n requires the evaluation of 

( r ;  2 P, (cos 0~)) = f ra z P1 (cos 0,,) Pmol dr. (A4) 

Writing 

cos O~ dr __ /~J~+l /  ( 2 )  2 1 

rE \ ~ + r/] (~ + r/)2 

x (~2 _ ~ )  d~ dr/do 

= (R/2)(~r/+ 1)(~-- r/) d~dr/d~o/(~ + ri) 2 

(A5) 

and substituting (A5) and Pmol (7) into (A4), we get 

(r~ -2 PI (cos Oa) ) = 2(2/R) 2 ~ a~ f d~ dr/exp (-a~)  
k , j  , - 1  

× [1 / (~  + r/)2][~k+2 03+, + ~k+, 03 
_ ~k+, 03+2_ ~k03+,]. (A6) 

Similarly for qH 

(r~ 3 PE (cos 0~)) = (2/R) 3 X a~ 
k , j  

oo 1 

x f d~ f dr/exp(-aq")[1/(~ + /7)4] [3~k+3 0j+2 
1 - 1  

_ 3~k+2 03+3 + 5¢t,+2 03+,_ 5¢k+, 03+2 + 3~k+, 

_ 3~k r/j+1 _ ~/,+ 3 r/j + ~l, rff+ 31. (A 7) 

Both integrals have singularities at nucleus a, r/ = 
--1, ~ = 1. In the evaluation it is necessary to integrate 
outside a sphere of radius e on nucleus a and then to 
investigate the limit as e --, 0, so that the integration is 
taken over the following limits (Isiguro, 1948; Reid & 
Vaida, 1973): 

lim d~ dr/+ d~ . d . 
E-~O I + ~  --1 I ~--~ 

(A8) 

The first term in (A8) is a straightforward inte- 
gration for the integrands of (A 4) and (A 7) yielding the 
same result after taking the limit as evaluating 

co 1 

f d~ f d~ 
1 - - I  

directly. After considerable manipulation this contribu- 
tion to e H is found to be 

2(2/R)Z~a~ik.j {(2j + 3)Li+k+2 (a)--  (2 j + 1)Lj+k (a) 

- 2(/" + 3)Aj+k+ l (a) 

Z '  + 2 2l Ak+t(a) 
+ . , _ , + , ,  

l = l  

_ ( l + 1 )  
2 j---=--/- Ak+t+z(a) ] } (A9) 

with An(a ) given by (A3) and 

Lm(a) = f t m exp (--at) In \ t  -- 1] dt. 
1 

(A10) 

The primed summation ~ '  indicates a sum over odd 
values of l only, and thus only contributes when j _> 2. 
The same two integrals An(a ) and Lm(a) arise in a 
determination of the electric-field gradient from a 
simple H 2 wavefunction (Isiguro, 1948). 

Similarly, the contribution to qn is 

(2/R)3 Z a~Gki(a), (Al l )  
k , j  

where 

Gkj(a) = [--(/" + 2)(/" + 1)(2j + 3)/2]Lj+k+2(a ) 

+ (2j + 1)(/"2 + j  + 1)Li+k(a ) 

- [ j ' ( / ' -  1)(2j- 1)/2]Lj+k_2(a) 
+ (/" + 1)(2j 2 + 7j + 6)Aj+,+l(a ) 

- - j (2 j  2 + 7j-- a)Aj+,_l(a ) 

j - l ,  2m(m -- 1) +L = (/'-- m)(/--  m + 2) [(m + j - -  1) 

xA,+m_2(a)-- (m + j  + 1)Ak+m(a)]. (A 12) 

Here A,(a) and Lm(a ) are given in (A3) and (A 10) and 
again the primed summation includes only odd values 
of m. The An(a) are readily obtainable from tables of 
definite integrals. For the logarithmic integral Lm(a ) we 
follow Epstein (1972) and split it into two parts, so that 
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oo 
Lm(a) = f exp (--at) t m In (t + I) dt 

1 
oo 

- -  f exp (--at) t m In (t -- 1) dt 
1 

= LAm(a ) - LBm(a ). 

Then it is readily shown that 

m rn! exp ( - a )  
LAin(a) = Am(a) ln 2 + 

o~m+ 1 (m k) k=O 

× n! L n=O t=o l! ] 

and 

m! ~ 1 Ak(a)a  k 
LBm(cO = - ( C  + In o)Am(a ) + - -  

a m k! (m -- k) 
k=0 (A15) 

where C is Euler's constant. 
It is now necessary to examine the behaviour of the 

second term in (A8). For (rg 2 P~(cos On)> the limit as e 
--, 0 vanishes. Thus, (G -2 P~ (cos 0~)> is given by (A9). 
In the case of the electric-field gradient though, the limit 
leaves an extra term of ~ exp ( - a )  which when included 
with (A 11) gives, 

(A13) 

(A14) 

(rS ~ P2(cos 0a)) = (2/R) 3 Z akiGki(a) + 2exp (--a) ,  
k.j (A 16) 

which can be rewritten as 

(ra 3 Pz(cos 0a)} = (2/R) 3 Z a~iG~(a) 
k,j 

+ (2rc/3) p(r a = R, r b = 0), (A 17) 

showing that the second term is proportional to the 
electron density at the second nucleus b. 
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